Subscribed unsubscribe Subscribe Subscribe

CCA-500問題例、CCA-500認定テキスト

試験エンジンは以下のCCA-500学習特徴があります - CCA-500学習現在最も人気がある試験もいろいろあります、CCA-500学習セカンドショットキャンペーン中だったから、何のCCA-500学習認定資格は最も人気なのですか、しかし必ずしも大量のCCA-500学習時間とエネルギーで復習しなくて、初めて認定試験を受ける君でも一回で試験に合格するCCA-500学習、それはあなたが迅速かつ円滑にCCA-500学習試験に合格するの、しかしそのCCA-500学習可能性はほとんどありません、100%のCCA-500学習合格率を保証でございます、実に質のCCA-500学習良い教材です、きみのCCA-500学習もっと輝い、与えられるためにCCA-500学習、CCA-500学習認定を学習道をリーダーする

IT業界の中でたくさんの野心的な専門家がいって、IT業界の中でより一層頂上まで一歩更に近く立ちたくてClouderaのCCA-500問題例に参加して認可を得たくて、Cloudera のCCA-500問題例が難度の高いので合格率も比較的低いです。ClouderaのCCA-500問題例を申し込むのは賢明な選択で今のは競争の激しいIT業界では、絶えず自分を高めるべきです。しかし多くの選択肢があるので君はきっと悩んでいましょう。

試験番号:CCA-500
試験科目:「Cloudera Certified Administrator for Apache Hadoop (CCAH)」
一年間無料で問題集をアップデートするサービスを提供いたします
最近更新時間:2016-10-19
問題と解答:全60問 CCA-500問題例

>> CCA-500問題例

 

CCA-500問題例は高品質の製品を提供するだけではなく、完全なアフターサービスも提供します。当社の製品を利用したら、一年間の無料更新サービスを提供します。しかも、速いスピードで受験生の皆様に提供して差し上げます。あなたがいつでも最新の試験資料を持っていることを保証します。

購入前にお試し,私たちの試験の質問と回答のいずれかの無料サンプルをダウンロード:http://www.pass4test.jp/CCA-500.html

A Cloudera Certified Administrator for Apache Hadoop (CCAH) certification proves that you have demonstrated your technical knowledge, skills, and ability to configure, deploy, maintain, and secure an Apache Hadoop cluster.

Cloudera Certified Administrator for Apache Hadoop (CCA-500)
Number of Questions: 60 questions
Time Limit: 90 minutes
Passing Score: 70%
Language: English, Japanese
Price: USD $295

Exam Sections and Blueprint

1. HDFS (17%)

  • Describe the function of HDFS daemons
  • Describe the normal operation of an Apache Hadoop cluster, both in data storage and in data processing
  • Identify current features of computing systems that motivate a system like Apache Hadoop
  • Classify major goals of HDFS Design
  • Given a scenario, identify appropriate use case for HDFS Federation
  • Identify components and daemon of an HDFS HA-Quorum cluster
  • Analyze the role of HDFS security (Kerberos)
  • Determine the best data serialization choice for a given scenario
  • Describe file read and write paths
  • Identify the commands to manipulate files in the Hadoop File System Shell

2. YARN (17%)

  • Understand how to deploy core ecosystem components, including Spark, Impala, and Hive
  • Understand how to deploy MapReduce v2 (MRv2 / YARN), including all YARN daemons
  • Understand basic design strategy for YARN and Hadoop
  • Determine how YARN handles resource allocations
  • Identify the workflow of job running on YARN
  • Determine which files you must change and how in order to migrate a cluster from MapReduce version 1 (MRv1) to MapReduce version 2 (MRv2) running on YARN

3. Hadoop Cluster Planning (16%)

  • Principal points to consider in choosing the hardware and operating systems to host an Apache Hadoop cluster
  • Analyze the choices in selecting an OS
  • Understand kernel tuning and disk swapping
  • Given a scenario and workload pattern, identify a hardware configuration appropriate to the scenario
  • Given a scenario, determine the ecosystem components your cluster needs to run in order to fulfill the SLA
  • Cluster sizing: given a scenario and frequency of execution, identify the specifics for the workload, including CPU, memory, storage, disk I/O
  • Disk Sizing and Configuration, including JBOD versus RAID, SANs, virtualization, and disk sizing requirements in a cluster
  • Network Topologies: understand network usage in Hadoop (for both HDFS and MapReduce) and propose or identify key network design components for a given scenario

4. Hadoop Cluster Installation and Administration (25%)

  • Given a scenario, identify how the cluster will handle disk and machine failures
  • Analyze a logging configuration and logging configuration file format
  • Understand the basics of Hadoop metrics and cluster health monitoring
  • Identify the function and purpose of available tools for cluster monitoring
  • Be able to install all the ecoystme components in CDH 5, including (but not limited to): Impala, Flume, Oozie, Hue, Cloudera Manager, Sqoop, Hive, and Pig
  • Identify the function and purpose of available tools for managing the Apache Hadoop file system

5. Resource Management (10%)

  • Understand the overall design goals of each of Hadoop schedulers
  • Given a scenario, determine how the FIFO Scheduler allocates cluster resources
  • Given a scenario, determine how the Fair Scheduler allocates cluster resources under YARN
  • Given a scenario, determine how the Capacity Scheduler allocates cluster resources

6. Monitoring and Logging (15%)

  • Understand the functions and features of Hadoop’s metric collection abilities
  • Analyze the NameNode and JobTracker Web UIs
  • Understand how to monitor cluster daemons
  • Identify and monitor CPU usage on master nodes
  • Describe how to monitor swap and memory allocation on all nodes
  • Identify how to view and manage Hadoop’s log files
  • Interpret a log file

Disclaimer: These exam preparation pages are intended to provide information about the objectives covered by each exam, related resources, and recommended reading and courses. The material contained within these pages is not intended to guarantee a passing score on any exam. Cloudera recommends that a candidate thoroughly understand the objectives for each exam and utilize the resources and training courses recommended on these pages to gain a thorough understand of the domain of knowledge related to the role the exam evaluates.